A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics
نویسندگان
چکیده
In this paper we propose a non-stationary uniform tension controlled interpolating 4-point scheme which provides users with a single tension parameter that, for any value in the range of definition, generates a C1-continuous limit curve. This curve scheme unifies non-stationary interpolating 4-point rules that are capable of representing elements of the linear space spanned by trigonometric, polynomial and hyperbolic functions. As a consequence, for special values of the tension parameter, such a scheme will be capable of reproducing all conic sections exactly. Additionally, progressively increasing the value of the tension parameter, we will be able to tighten the limit curve to the piecewise linear curve between the data points.
منابع مشابه
A Family of 4-Point n-Ary Interpolating Scheme Reproducing Conics
The n-ary subdivision schemes contrast favorably with their binary analogues because they are capable to produce limit functions with the same (or higher) smoothness but smaller support. We present an algorithm to generate the 4-point n-ary non-stationary scheme for trigonometric, hyperbolic and polynomial case with the parameter for describing curves. The performance, analysis and comparison o...
متن کاملShape controlled interpolatory ternary subdivision
Ternary subdivision schemes compare favorably with their binary analogues because they are able to generate limit functions with the same (or higher) smoothness but smaller support. In this work we consider the two issues of local tension control and conics reproduction in univariate interpolating ternary refinements. We show that both these features can be included in a unique interpolating 4-...
متن کاملAn interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control
In this paper we present a non-stationary 4-point ternary interpolatory subdivision scheme which provides the user with a tension parameter that, when increased within its range of definition, can generate C2-continuous limit curves showing considerable variations of shape. As a generalization we additionally propose a locally-controlled C2-continuous subdivision scheme, which allows a differen...
متن کاملCurvature of Approximating Curve Subdivision Schemes
The promise of modeling by subdivision is to have simple rules that avoid cumbersome stitching-together of pieces. However, already in one variable, exactly reproducing a variety of basic shapes, such as conics and spirals, leads to non-stationary rules that are no longer as simple; and combining these pieces within the same curve by one set of rules is challenging. Moreover, basis functions, t...
متن کاملAn interpolating 4-point C2 ternary stationary subdivision scheme
A novel 4-point ternary interpolatory subdivision scheme with a tension parameter is analyzed. It is shown that for a certain range of the tension parameter the resulting curve is C2. The role of the tension parameter is demonstrated by a few examples. There is a brief discussion of computational costs. 2001 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 24 شماره
صفحات -
تاریخ انتشار 2007